Why every Product Manager should know Machine Learning

Speak the language of engineering

Even though, PMs should focus more on the problem and less on the solution and PMs need not play a role in drafting HOW to address the problem using ML, PMs should definitely have the technology acumen to understand the HOW. Understanding of HOW will position PMs to unbiasedly evaluate how exactly ML is better at addressing the customer problem, does it really add significant value. Incorporating ML does not automatically bring results. There is no magic behind ML. ML has to be harnessed in a right way with a right set of data and models to contribute the right value. Rightly so, It is the not the destination that is always important, the journey is also equally important to ensure that PMs took a notice of the efforts by the engineering team and not just the outcome. I always believe in rewarding efforts and not just outcomes. During the journey, PM should speak the language of engineering to comprehend their efforts and to assist them as well. Let me imagine a fictional conversation between my engineer and me after I asked for his assistance to help me predict product revenue based on earlier collected data.

What lies beneath the surface?

Customers (mostly B2B) are not merely interested in what happens above the surface, they are keen to understand what happens beneath the surface as well. It is essential for Product Managers to explain how the product works in addition to articulating what the product could do for them. Without understanding the specific flavor of ML used in the product and how it is improving the overall efficacy of the solution, it would be tough for Product Manager to succinctly articulate the details.

ML will soon be as fundamental as Excel to PMs

After I scratched the surface of learning ML through online courses at Coursera and with hands-on of Python courses. I primarily understood two things that ML can soon become a de-facto technology for data visualization and analysis alike Excel.

How did I got started

Even since I started learning ML, I love every bit of it. Probably, it was because of my passion for mathematics and I have a background in statistics. If you detest numbers, then I bet ML will definitely be boring for you.

  • What is supervised and unsupervised learning?
  • What are various models under each of those categories? How to identify the right model depending on the use-case?
  • How to measure and interpret error for various algorithms?
  • When to use regularization?
  • What is bias and variance? What are techniques for bias/variance tradeoffs?
  • When to add more features to existing data and when to augment more data to existing data?

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store